





### Ultrasound in Shock

Todd W. Sarge, MD Assistant Professor in Anaesthesia Harvard School of Medicine Beth Israel Deaconess Medical Center Boston, MA



Beth Israel Deaconess Medical Center



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

2017 Shock Symposium - The Latest in Resuscitation and Critical Care May 5th, 2017



- \* Define "Focused Ultrasound" and rationale for use in practice
- \* Review FATE / FAST / FEEL exams
- \* Review a diagnostic algorithm for Ultrasound in shock
- Present real clinical case examples



## Focused Ultrasound - Levels



Beth Israel Deaconess Medical Center

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

# The name game...

- \* FATE (Jensen MB)
- \* FEEL (Breitkreutz
- \* **BLEEP** (Pershad J,
- \* Goal-directed limite
- \* Goal-oriented hand-
- \* CLUE (Kimura B,
- \* **RACE** (McLean A
- \* FOCUS (Beaulieu )
- \* BEAT (Gunst M,

#### Making Everything Easier!™

# Echo @ The Point of Care

Everyone

#### Learn to:

Set up for Scanning
Generate the Pictures
Follow some Basic Echo Rules

EmergencyPedia



**Novelty Edition** 

#### c Anesth 2005) Med 2007)



HARVARD MEDICAL SCHOOL

# FATE - What is it?

| Dr. Sloth's FATE Protocol Official Website | Contact us   Website Search                                                                                    |   |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|---|
| Home Download FATE Card (.pdf)             |                                                                                                                |   |
|                                            | Fate-Protocol<br>Dr. Sloth's FATE Protocol Official Website<br>(Focus Assessed Transthoracic Echocardiography) | > |

#### Welcome to Fate-Protocol Website

FATE is the original focused echo protocol practiced since 1989. It is a simple and effective roadmap to interpret echocardiographic findings in a clinical context. FATE is easy to learn and quickly performed and can be applied in all possible clinical scenarios pre- and inhospitally, perioperatively, and in intensive care or emergency settings. The patient can be supine or in the sitting position. All essential information including a quick guidance to interpret the echocardiographic findings is printed on a double-sided laminated pocket card, now also available as an App for I-phone and Android.

#### RELATED LINKS







\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

# FATE - Rationale

- \* Basic cardiac ultrasound can augment other clinical skills
- Invasive monitors (e.g. Swanz-Ganz catheters) have not been shown to improve outcome
- Ultrasound echo machines are more feasible and portable for use by clinicians at the bedside
- \* Indicated in any patient with hemodynamic instability or shock.



# FATE - Windows

### Four Standard Windows:

- \* 1. Subcostal
- \* 2. Apical
- \* 3. Para-sternal (Long and Short Axis)
- 4. Pleural (Left and Right)



# FATE - Views

### **BASIC** Views

- \* 1. Subcostal 4-ch
- \* 2. Apical 4-ch
- 3. Para-sternal \* (Long and Short Axis-mid pap)
- \* 4. Pleural (Left and Right)



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

# FATE - Views

### **EXTENDED** Views

- 1. Subcostal IVC \*
- \* 2. Apical 2 and 3-ch
- \* 3. Para-sternal (Short Axis-mitral and aortic)



Pos 3: Parasternal short axis mitral plane Pos 3: Parasternal aorta short axis



# FATE - Goals

### Focus Assessed Transthoracic Echo (FATE)

(European Journal of Anaesthesiology 2004; 21: 700-707)

- 1. Look for obvious pathology
- 2. Assess wall thickness + chamber dimensions
- 3. Assess bi ventricular function
- 4. Image pleura on both sides
- 5. Relate the information to the clinical context
- 6. Apply additional ultrasound



# FATE - Validation

European Journal of Anaesthesiology 2004; 21: 700–707 © 2004 European Academy of Anaesthesiology ISSN 0265-0215

Original Article

### Transthoracic echocardiography for cardiopulmonary monitoring in intensive care

M. B. Jensen, E. Sloth, K. M. Larsen, M. B. Schmidt

Aarhus University Hospital, Department of Anaesthesiology and Intensive Care, Skejby Sygehus, Denmark

 \* FATE protocol provided useful images that contributed positively in 227 out of 233 echo studies (97%)

\* ~37% of echo's revealed NEW information and were DECISIVE in ~24%

Beth Israel Deaconess Wedical School Medical Center

# Clinical Case #1 - History

- 87 y.o. F with no PMHx presents with chest pain and found to have contained rupture of large thoraco-abdominal aneurysm
- Underwent emergent endograft of aneurysm
- POD # 3 develops hypotension and SOB on the floor necessitating tx to the ICU
- Patient intubated and stabilized on pressors and undergoes chest CT revealing left hemothorax
- Thoracic surgery is consulted and plans for a VAT's washout via right chest
- Bedside TTE is performed...

Beth Israel Deaconess Medical Center









HARVARD MEDICAL SCHOOL TEACHING HOSPITAL





Beth Israel Deaconess Medical Center

HARVARD MEDICAL SCHOOL

# Clinical Case #1 - Diagnosis



# FAST - Exam





HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

# FAST - What is it?

- \* F ocused
- \* A ssessment with
- \* **S** onagraphy in
- \* T rauma





# FAST - Rationale

- Bleeding and hemorrhage is the most common cause of hypotension in trauma
- \* Diagnostic Peritoneal Lavage (DPL) is invasive with associated risk
- \* Computed Tomography (CT) is time consuming
- Fluid is easily identified by ultrasound as anechoic (jet black) adjacent to hyper-echoic structures (e.g. liver and diaphragm)
- \* In the proper setting, literature suggest FAST has 70-90% sensitive and nearly 100% specific for detecting clinically significant bleeding



# FAST - Advantages

- \* Ultrasound is portable, repeatable and non-invasive
- Can be performed rapidly at the bedside
- \* Can be done simultaneously with resuscitation efforts
- Does not require use of contrast or radiation exposure (safe in pregnancy and pediatrics)



# FAST Goals

- Rapid detection of:
  - \* Hemoperitoneum
  - \* Hemopericardium
  - Hemothorax
  - Pneumothorax (eFAST)





## FAST Indications / Contraindications

#### **INDICATIONS:** \*

- Blunt or penetrating thoraco-abdominal trauma \*
- Trauma / Abdominal Pain in pregnancy
- \* Unexplained Hypotension in ANY patient

#### **CONTRAINDICATIONS:** \*

Any immediate indication for OR (e.g. evisceration or ruptured diaphragm on outside hospital imaging, etc.)



FAST - Views

### Four FAST Views:

- Cardiac
- Peri-Hepatic (Right Upper Quadrant)
- Peri-Splenic (Left Upper Quandrant)

Pelvic





# FAST - Where to Begin?







Beth Israel Deaconess Medical Center



### Subcostal / Cardiac



### Peri-Splenic



### Peri-Hepatic



### Pelvic



# Clinical Case #2

- \* 71 y.o. female POD #9 from L3-L5 lami awaiting d/c to rehab
- Pt found unresponsive, agonal breathing --> Code Blue called
- \* Pt appeared pale with a distended abdomen. Hypotensive (SBP 80's)
- Volume initiated and tx to ICU. Poor trans-thoracic windows prompting TEE
- PMHx: Fibrolipoma of spinal cord; DJD Lumbar spine; Chronic Pain syndrome; GERD; Anxiety; Depression



# Clinical Case #2



Beth Israel Deaconess Medical Center

HARVARD MEDICAL SCHOOL

# FEEL - Exam







Beth Israel Deaconess Medical Center



# FEEL - What is it?

- \* F ocused
- \* E chocardiographic
- \* E valuation in
- \* L ife Support







#### Focused echocardiographic evaluation in resuscitation management: Concept of an advanced life support-conformed algorithm

tical Care Medicine

OFFICIAL IOURNAL OF THE SOCIETY OF CRITICAL CARE MEDICINE

Raoul Breitkreutz, MD; Felix Walcher, MD, PhD; Florian H. Seeger, MD

Emergency ultrasound is suggested to be an important tool in critical care medicine. Time-dependent scenarios occur during preresuscitation care, during cardiopulmonary resuscitation, and in postresuscitation care. Suspected myocardial insufficiency due to acute global, left, or right heart failure, pericardial tamponade, and hypovolemia should be identified. These diagnoses cannot be made with standard physical examination or the electrocardiogram. Furthermore, the differential diagnosis of pulseless electrical activity is best elucidated with echocardiography. Therefore, we developed an algorithm of focused echocardiographic evaluation in resuscitation management, a structured process of an advanced life support-conformed transthoracic echocardiography protocol to be applied to point-of-care diagnosis. The new 2005 American Heart Association/European Resuscitation Council/International Liaison Committee on Resuscitation guidelines recommended high-quality cardiopulmonary resuscitation with

minimal interruptions to reduce the no-flow intervals. However, they also recommended identification and treatment of reversible causes or complicating factors. Therefore, clinicians must be trained to use echocardiography within the brief interruptions of advanced life support, taking into account practical and theoretical considerations. Focused echocardiographic evaluation in resuscitation management was evaluated by emergency physicians with respect to incorporation into the cardiopulmonary resuscitation process, performance, and physicians' ability to recognize characteristic pathology. The aim of the focused echocardiographic evaluation in resuscitation management examination is to improve the outcomes of cardiopulmonary resuscitation. (Crit Care Med 2007; 35[Suppl.]:S150–S161)

KEY WORDS: emergency echocardiography; focused echocardiographic evaluation in resuscitation; resuscitation; cardiopulmonary resuscitation; algorithm; critical care ultrasound

Beth Israel Deaconess Medical Center

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL Proposed Integration of a brief Echocardiography (FEEL) into the ALS to identify Reversible Causes



Beth Israel Deaconess Medical Center

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Breitkreutz et al. Crit Care Med 2007;35[supp]:S150-S161

## FEEL - Rationale for use

Identify (or rule out) 4 mechanical causes of PEA:

- 1. Tamponade
- 2. Hypovolemia
- 3. Pulmonary Embolism
- 4. Severe LV Dysfunction (MI)





# FEEL - Rationale for avoiding

#### **AHA Consensus Statement**

CPR Quality: Improving Cardiac Resuscitation Outcomes Both Inside and Outside the Hospital A Consensus Statement From the American Heart Association

Endorsed by the American College of Emergency Physicians

Abstract—The "2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care" increased the focus on methods to ensure that high-quality cardiopulmonary resuscitation (CPR) is performed in all resuscitation attempts. There are 5 critical components of high-quality CPR: minimize interruptions in chest compressions, provide compressions of adequate rate and depth, avoid leaning between compressions, and avoid excessive ventilation. Although it is clear that high-quality CPR is the primary component in influencing survival from cardiac arrest, there is considerable variation in monitoring, implementation, and quality improvement. As such, CPR quality varies widely between systems and locations. Victims often do not receive high-quality CPR because of provider ambiguity in prioritization of resuscitative efforts during an arrest. This ambiguity also impedes the development of optimal systems of care to increase survival from cardiac arrest. This consensus statement addresses the following key areas of CPR quality for the trained rescuer: metrics of CPR performance; monitoring, feedback, and integration of the patient's response to CPR; team-level logistics to ensure performance of high-quality CPR; and continuous quality improvement on provider, team, and systems levels. Clear definitions of metrics and methods to consistently deliver and improve the quality of CPR will narrow the gap between resuscitation science and the victims, both in and out of the hospital, and lay the foundation for further improvements in the future. (*Circulation.* 2013;128:00-00.)

(I)

#### Part 7: Adult Advanced Cardiovascular Life Support 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Mark S. Link, Chair; Lauren C. Berkow; Peter J. Kudenchuk; Henry R. Halperin; Erik P. Hess; Vivek K. Moitra; Robert W. Neumar; Brian J. O'Neil; James H. Paxton; Scott M. Silvers; Roger D. White; Demetris Yannopoulos; Michael W. Donnino

#### 2015 Recommendations—Updated

Ultrasound (cardiac or noncardiac) may be considered during the management of cardiac arrest, although its usefulness has not been well established (Class IIb, LOE C-EO).

If a qualified sonographer is present and use of ultrasound does not interfere with the standard cardiac arrest treatment protocol, then ultrasound may be considered as an adjunct to standard patient evaluation (Class IIb, LOE C-EO).



eth Israel Deaconess

Medical Center

## Clinical Case #3

- \* 67 y.o. male POD #3 from toe amputation
- \* Pt found unresponsive without palpable pulse CPR initiated
- Ultrasound performed during CPR

\* PMHx: Peripheral Vascular Disease; HTN; GERD



# Clinical Case #3





罚

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

# Ultrasound Shock Algorithm



Beth Israel Deaconess Medical Center Courtesy of Sajid Shahul, MD

# THANK YOU!



HARVARD MEDICAL SCHOOL