Controversies in Chest Compressions & Airway Management During CPR

Bob Berg

No Financial Conflicts of Interest

- Employment: University of Pennsylvania
- AHA Volunteer
 - AHA GWTG-R & Systems of Care committees
 - Past Chair, GWTG-R Committee
 - Past Chair, **BLS** Committee
 - Past Chair, PALS Committee
 - 2015 ILCOR BLS Evidence Evaluation
 - 2015 AHA Systems of Care Guidelines
- Grants: NICHD, NHLBI
- Intellectual Conflicts of Interest >25 yrs of Cardiac Arrest & CPR Research

Introduction

Chest compressions

- Hands-only CPR
- "Physiologic-directed/patient-centered CPR"

Tracheal Intubation during in-hospital CPR

"Closed-chest massage"

Kouwenhoven, Jude, Knickerbocker, JAMA 1960

- While studying defibrillation in small dogs
 - Ao pressure increased with paddles
 - Adequate circulation for 30 min of CC-only CPR
- 20 patients: asphyxia in peri-op setting
 - 20/20 survived the cardiac arrest
 - 14/20 long-term survivors

Arterial Blood Pressure during CPR Jude, JAMA 1961

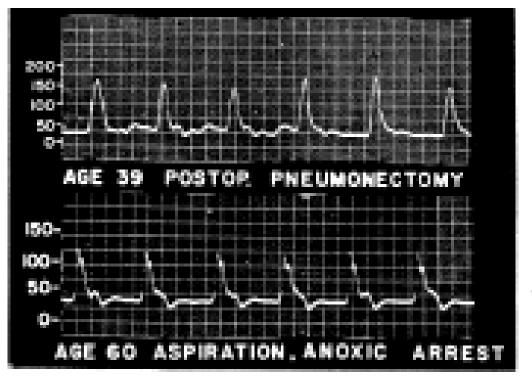
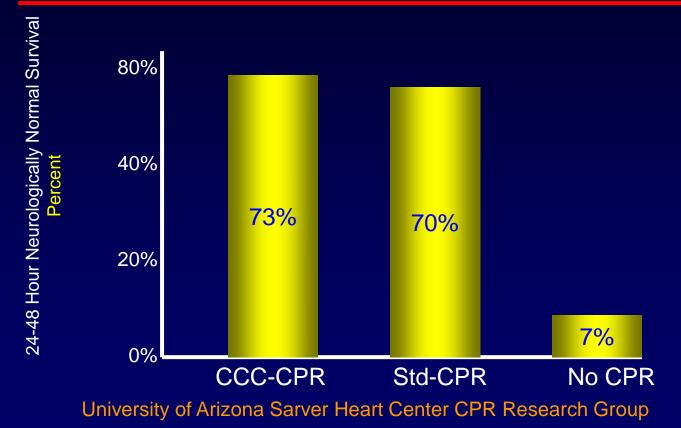



Fig. 3.-Examples of arterial blood pressure developed with external cardiac manager. Are and size of chest did

CCC-CPR vs "Standard CPR" for VF 24-48 Hr Survival in 169 swine in 6 studies

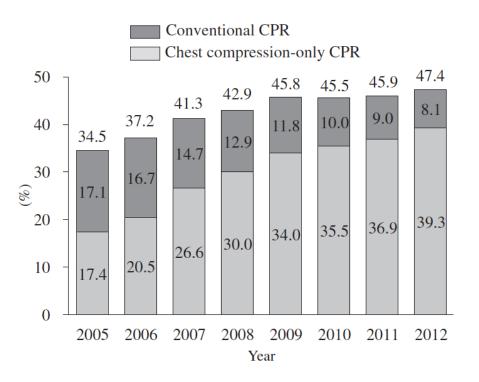
Why isn't Rescue Breathing necessary initially for VF?

• Excellent SaO₂ at time of VF

Rescue breathing is life-saving for asphyxia cardiac arrests

Clark AEM 1992 Bang Resus 2003 Bobrow Circ 2008

Compression-induced ventilation

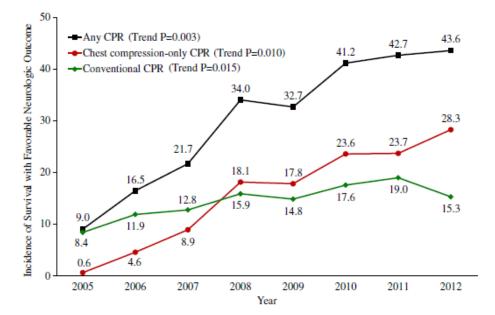

American Heart American Stroke Association_{*} Association. Learn and Live* Survival by Layperson Bystander CPR Type Discharge 25% Adj OR 1.59 (95% CI: 1.08, 2.35) 20% vs conventional CPR Hospital 15% 10% 13.3% 9 7.8% Survival 5% 5.2% 113/849 52/666 50/2900 0% **No CPR** Conventional Hands-CPR only CPR Bobrow, Spaite, Berg et al. JAMA 2010

Dissemination of CC-only CPR and Survival after adult OHCA

816,835 OHCAs No CPR 57.1%

CC-only CPR30.6%Conventional CPR12.3%

Iwami, Circulation 2015



Dissemination of CC-only CPR and Survival after adult OHCA

	CC-CPR (n=249,970)	Conventional CPR (n=100,469)	No CPR (n=465,946)	Р
Prehospital ROSC	15818 (6.3)	7982 (7.9)	24163 (5.2)	<0.001
1-month survival	10685 (4.3)	5717 (5.7)	16636 (3.6)	<0.001
CPC 1 or 2	4846 (1.9)	2690 (2.7)	5762 (1.2)	<0.001

Iwami, Circulation 2015

Dissemination of CC-only CPR and Survival after adult OHCA

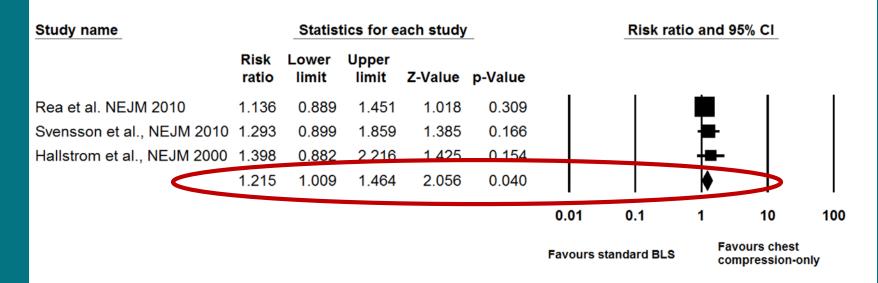


Figure 3. Trends in the incidence of survival with favorable neurological outcome per 10 million population, attributed to the type of bystander-initiated cardiopulmonary resuscitation (CPR). The trends were tested with Poisson regression models.

Iwami, Circulation 2015

Dispatcher-assisted CPR RCTs

Meta Analysis

Hupfl, Lancet 2010

American Heart

Association_{*}

Learn and Live

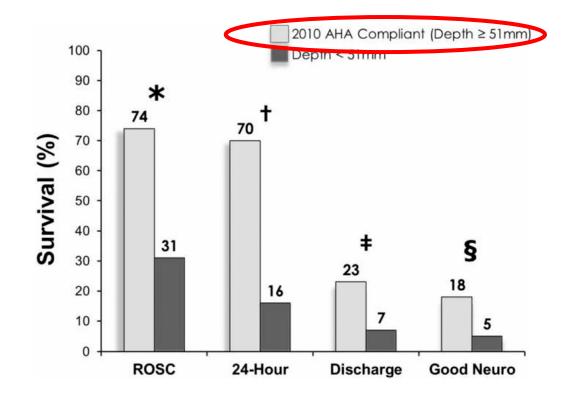
American Stroke

Association.

Cardiopulmonary Resuscitation Quality: Improving Cardiac Resuscitation Outcomes Both Inside and Outside the Hospital: A Consensus Statement From the American Heart Association

Peter A. Meaney, Bentley J. Bobrow, Mary E. Mancini, Jim Christenson, Allan R. de Caen, Farhan Bhanji, Benjamin S. Abella, Monica E. Kleinman, Dana P. Edelson, Robert A. Berg, Tom P. Aufderheide, Venu Menon and Marion Leary November 2013

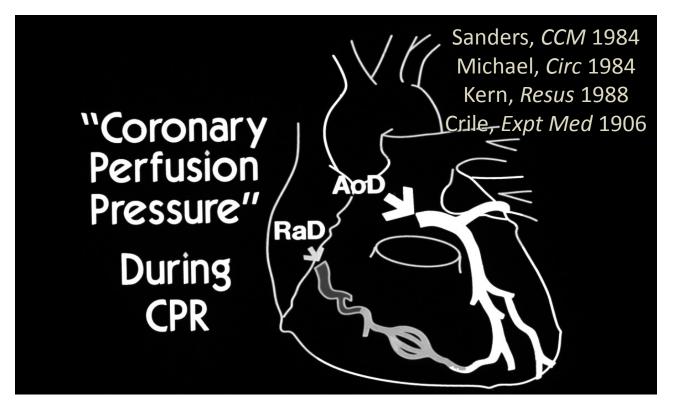
"High quality CPR is the primary component influencing survival"


"Monitor CPR," but what targets?

Measure CC Rate, Depth, and Leaning

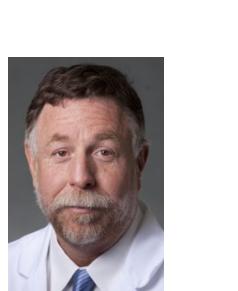
CPR QUALITY MAKES A DIFFERENCE

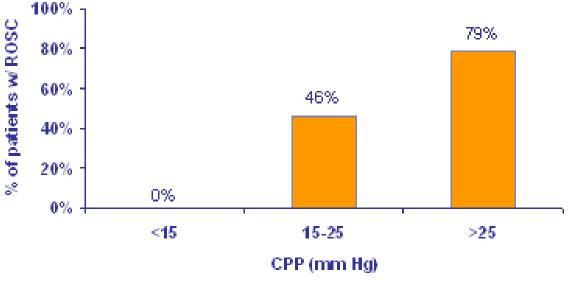
Do we have the right CPR targets to monitor?


Rescuer-centric goals (2 inches/5 cm)

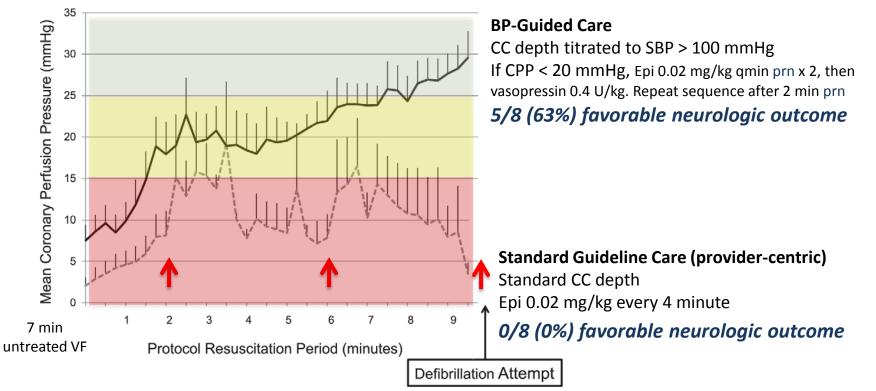
versus

Patient-centric hemodynamic goals




Coronary Perfusion Pressure Critically Important for Successful CPR

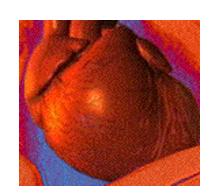
CoPP >20 mmHg; AoD >30 mmHg


Coronary Perfusion Pressure during CPR Adult OHCA

Paradis, JAMA 1990

Blood Pressure Guided CPR Improve Outcomes In Swine Cardiac Arrest Model

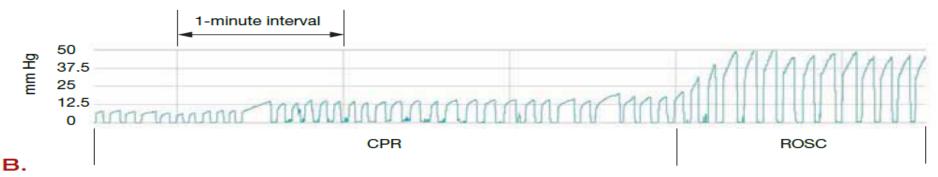
Sutton AJRCCM 2014, Sutton Resus 2013; Friess CCM 2013; Naim CCM 2016; Morgan Resus 2017



PICqCPR

NICHD Collaborative Pediatric Critical Care Research Network

Relationship of Arterial DBP (from start of CPR until up to 10 minutes) with Survival Outcomes

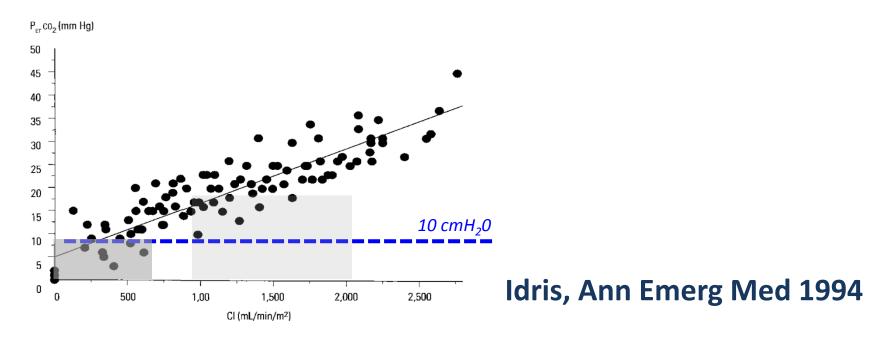

Berg, Sutton, Nadkarni & CPCCRN investigators PAS Abstract 2017

	Index CPR Events ≥ 1 min N = 164				
	ROSC > 20 min		112 (68%)		
	Survival to discharge		77 (47%)		
	Favorable neuro outcome 70 (43%)				
		Т			
		٦			
Mean DBP ≥ 25 mmHg (infants)			Mean DBP < 25mmHg (infants)		
or ≥ 30 mmHg Children			<30 mmHg (children)		
N = 101 (62%)			N = 63 (39	%)	
ROSC > 20 min	75 (74%)		ROSC > 20 min		37 (59%)
Survival to discharge 55 (54%)			Survival to discharge		22 (35%)
Favorable neuro outcome 49 (49%)			Favorable neuro outco	ome	21 (33%)

Association of mean DBP ≥25/30mmHg with Outcomes (N=163)

	aRR (95%CI)	P-value
ROSC	1.2 (1.0, 1.6)	0.07
Surv to d/c	1.7 (1.2, 2.6)	0.003
Survive with Favorable Neuro	1.6 (1.1, 2.5)	0.01

Waveform Capnography During CPR

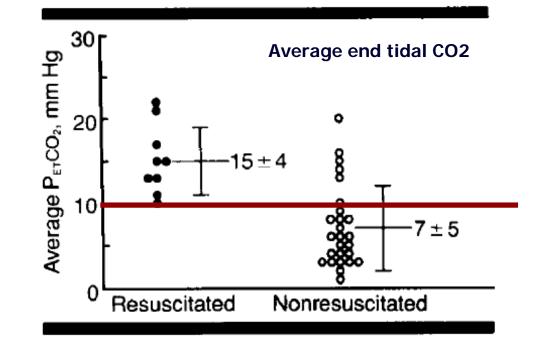


Capnography to monitor effectiveness of resuscitation efforts. This second capnography tracing displays the P_{ETCO_2} in mm Hg on the vertical axis over time. This patient is intubated and receiving CPR. Note that the ventilation rate is approximately 8 to 10 breaths per minute. Chest compressions are given continuously at a rate of slightly faster than 100/min but are not visible with this tracing. The initial P_{ETCO_2} is less than 12.5 mm Hg during the first minute, indicating very low blood flow. The P_{ETCO_2} increases to between 12.5 and 25 mm Hg during the second and third minutes, consistent with the increase in blood flow with ongoing resuscitation. Return of spontaneous circulation (ROSC) occurs during the fourth minute. ROSC is recognized by the abrupt increase in the P_{ETCO_2} (visible just after the fourth vertical line) to over 40 mm Hg, which is consistent with a substantial improvement in blood flow.

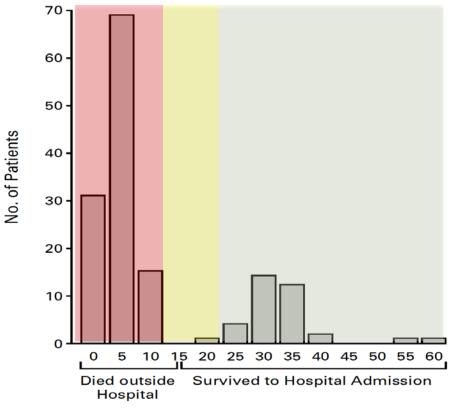
© 2010 American Heart Association. All rights reserved.

Neumar 1/21/17

End-Tidal CO₂ is Proportional to Cardiac Output During Swine CPR



Neumar 1/21/17


Normal Cardiac Index 2.6-4.2 ml/min/m²

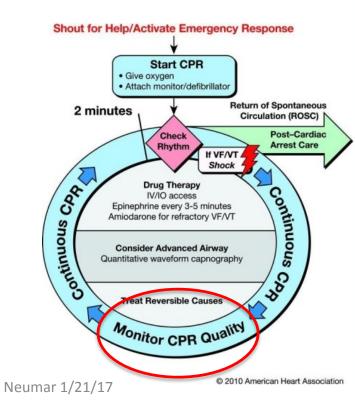
ETCO2 in adult OHCA Sanders, JAMA 1989

End-Tidal CO₂ Prognostication during CPR

End-Tidal Carbon Dioxide Level (mm Hg)

TABLE 1. END-TIDAL CARBON DIOXIDE VALUES IN PATIENTSWHO SURVIVED TO HOSPITAL Admission and in Those WhoDID NOT.

VARIABLE	Nonsurvivors (N=115)	Survivors (N = 35)	P Value*	
mean ±SD (range)				
Age (yr) End-tidal c	68.0±13.8 (31–95) arbon dioxide	71.5±13.0 (27-90)	0.19	
(mm F	I_{g}	122+4616 221	0.02	
Final	4.4±2.9 (0-10)	32.8±7.4 (18-58)	<0.001	


*P values were calculated with the Wilcoxon rank-sum statistic.

†Initial end-tidal carbon dioxide levels were determined immediately upon intubation. Final end-tidal carbon dioxide levels were determined after 20 minutes of advanced cardiac life support.

Levine NEJM 1998

Goal-Directed CPR?

Adult Cardiac Arrest

ACLS 2015 Focused Update

Although no clinical study has examined whether titrating resuscitative efforts to physiologic parameters during CPR improves outcome, it may be reasonable to use physiologic parameters (quantitative waveform capnography, arterial diastolic pressure) when feasible to monitor and optimize CPR quality, guide vasopressor therapy, and detect ROSC. (Class IIb, LOE C-EO)

Potential CPR Physiologic Goals

Parameter	Futility	Goal	References
Coronary Perfusion Pressure	<15 mmHg	>25 mmHg	Paradis 1990 Kern 1988
Arterial Relaxation Pressure	<20 mmHg	>30 mmHg	Paradis 1990 Berg abstr 2017
End-Tidal CO ₂ (PetCO ₂)	<10 mmHg	>20 mmHg	Levine 1998

Modified from Neumar 1/21/17

Tracheal Intubation during Pediatric CPR Hypothesis: "Tracheal intubation during cardiac arrest would be associated with improved outcome" 2294 time-dependent propensity matched IHCAs

Survival to Hospital Discharge

36% TI vs **41%** not TI during CPR

aRR 0.89 (95%CI 0.81-0.99), P=0.03

Mechanism: ?interruptions, CPR quality, bag-mask often adequate?

Message: TI during CPR is high risk

Andersen, JAMA 2016

Tracheal Intubation during Adult CPR 86,628 time-dependent propensity matched IHCAs

Survival to Hospital Discharge

16.3% TI vs 19.4% not TI

aRR 0.84 (95%CI 0.81-0.87), P<0.001

Favorable Neuro (CPC 1 or 2): aRR 0.97 (95%CI 0.75-0.81)

Although the study design does not eliminate potential for confounding, these findings do not support early tracheal intubation for in-hospital cardiac arrest **Andersen, JAMA 2016**

Conclusion

Chest compressions

- Hands-only CPR can be life-saving
- "Physiologic-directed/patient-centered CPR"
 - is the way of the future

Tracheal Intubation during CPR is a high risk intervention