Pulmonary Embolism – It's a Team Sport Case Presentations and Discussion

Panelists: Christopher Kabrhel, MD, MPH Louis Chu, MD Samuel Goldhaber, MD Jeffrey L. Weinstein, MD Barbara L. LeVarge, MD

Case 1

- 25 yo F, otherwise healthy, on oral contraceptives
- Long haul flight 3 days prior
- Sudden onset pleuritic chest pain and dyspnea
- Called EMS, arrives to ED with following VS: – BP 90/65, HR 133, RR 30, O2 89% RA, 94% NRB
- CTA chest shows saddle PE with moderate R heart strain

Pulmonary Embolism Response Team (PERT)

recommendations to primary treatment team

MGH PERT Activations

n=394 (initial 30 months) now, n≈850

- Multidisciplinary virtual consults
 - Average length: 25 mins.
 - Range 5–15 physicians
 - Off-hours/weekends: 53%

MGH PERT Treatment

MGH PERT Treatment

Deadmon, AEM, 2016

Case 1

- 25 yo F, otherwise healthy, on oral contraceptives
- Long haul flight 3 days prior
- Sudden onset pleuritic chest pain and dyspnea
- Called EMS, arrives to ED with following VS: – BP 90/65, HR 133, RR 30, O2 89% RA, 94% NRB
- CTA chest shows saddle PE with moderate R heart strain

ADVANCED MANAGEMENT

1) Systemically administered (via peripheral IV) thrombolysis: Full Dose (TPA 100 mg) Half Dose (TPA 50 mg) 2) Pharmacomechanical therapy with catheter-directed (ultrasoundfacilitated) thrombolysis: TPA 24 mg 3) Surgical Embolectomy **IVC** Filter 4)

LYSIS IN SUBMASSIVE PE: MORTALITY META-ANALYSIS

	Throm	bolytics	Anticoa	gulants					
Source	No. of Events	No. of Patients	No. of Events	No. of Patients	OR (95% CI)	Thro	Favors ombolytics	Favors Anticoagulants	Weight %
Goldhaber et al, ² 1993	0	46	2	55	0.16 (0.01-2.57)				5.3
Constantinides et al, ³ 2002	4	118	3	138	1.58 (0.35-7.09)				18.4
IPES, ²⁹ 2010	0	28	1	30	0.14 (0.00-7.31)	◄	-		2.7
asullo et al, ¹¹ 2011	0	37	6	35	0.11 (0.02-0.58)		•		15.1
MOPETT, ¹⁰ 2012	1	61	3	60	0.35 (0.05-2.57)		-		10.5
JLTIMA, ³⁰ 2013	0	30	1	29	0.13 (0.00-6.59)	<	•		2.7
OPCOAT, ⁹ 2014	1	40	1	43	1.08 (0.07-17.53)	-			5.3
PEITHO, ⁸ 2014	6	506	9	499	0.66 (0.24-1.82)				40.0
Total	12	866	26	889	0.48 (0.25-0.92)		\diamond		100.0
leterogeneity: χ ² = 7.63; <i>P</i> = .37;	- 070								гтпп
Overall effect: z = 2.22; P = .03						0.01	0.1 1 OR (9	0 10 5%Cl)	100
Intermediate-risk PE									
All-cause mortality (8)		12,	/866 (1	.39)	26/88	39 (2.92)	Ν	NT = 65	.03
Major bleeding (8) ^a		67,	/866 (7	.74)	20/88	39 (2.25)	N	NH = 18	<.001

(JAMA 2014; 311: 2414-2421)

PEITHO 38-MONTH FOLLOW-UP: PROMISES FULFILLED?

ENDPOINT	LYSIS	HEPARIN
Long-Term Mortality	20%	18%
Chronic SOB or other symptoms	36%	30%
Incidence of CTEPH	2.1%	3.2%

(JACC 2017; 69: 1536-1544)

FIBRINOLYSIS REPORT CARD: PROMISES FULFILLED?

Promise	Yes	No
Reduced Mortality and Recurrent PE: Short-Term	X X	
Reduced Long-Term Mortality		Χ
Reduced Long-Term Recurrent PE		X
Improved Function and QOL		Χ
Reduced Incidence of CTEPH		Χ

Case 1

- 25 yo F, otherwise healthy, on oral contraceptives
- Long haul flight 3 days prior
- Sudden onset pleuritic chest pain and dyspnea
- Called EMS, arrives to ED with following VS: – BP 90/65, HR 133, RR 30, O2 89% RA, 94% NRB
- CTA chest shows saddle PE with moderate R heart strain

Drug Delivery Catheter

Sideholes for Delivery of Fibrinolytic Agent

Ultrasound Core Catheter

High Frequency, Low Power Ultrasound Transducers

Ultrasound causes fibrin strands to thin and network to loosen Ultrasound causes acoustic streaming

Pulmonary Embolism

Fibrin strand network without ultrasound

Catheter Directed Thrombolysis

Kuo CHEST, 2015

Catheter Directed Thrombolysis

Cleaner®

- Proximal infusion of thrombolytic
- Mechanical Fragmentation
- Ultrasonic acceleration
- 12-24 hour treatment
- Theoretical benefits:
 - lower drug dose (10-20mg tPA)
 - Drug acts faster, clearing clot sooner
 - Less hemolysis
 - Monitor PA pressure

Questions for our experts related to thrombolysis

Case 2

- 63 yo M with small cell lung cancer
- Sent from Oncology clinic to Radiology to evaluate for LLE DVT
- US confirms DVT
- Code Blue called to Radiology as pt exiting
- VS: BP 74/46, HR 152, RR 32, O2 86%
- Point of care ultrasound shows a moderate pericardial effusion but no evidence tamponade with RV dilatation and McConnell's sign

Contraindications to Thrombolysis

Absolute

- Prior intracranial hemorrhage
- Intracranial malignant neoplasm or cerebrovascular disease (i.e. AVM)
- Ischemic stroke within 3 months
- Active bleeding or bleeding diathesis
- Recent surgery involving brain or spinal canal
- Recent significant closed-head trauma
- Suspected aortic dissection
- Relative
 - Age >75 years
 - Pregnancy
 - Remote ischemic stroke (>3 months)
 - Major surgery within 3 weeks
 - Recent internal bleeding
 - Traumatic or prolonged CPR (>10 minutes)
 - Non-compressible vascular puncture
 - Current use of anticoagulation
 - Severe uncontrolled hypertension at presentation (>SBP 180 or DBP >110) or history of chronic, severe, poorly controlled hypertension
 - Dementia

Case 2

- 63 yo M with small cell lung cancer
- Sent from Oncology clinic to Radiology to evaluate for LLE DVT
- US confirms DVT
- Code Blue called to Radiology as pt exiting
- VS: BP 74/46, HR 152, RR 32, O2 86%
- Point of care cardiac ultrasound shows moderate pericardial effusion but no evidence tamponade with RV dilatation and McConnell's sign

Who to treat

- Team sport Multidisciplinary teams
- Guidelines lag
- Massive PE often = IV TPA
- Stable, submassive PE = anticoagulation
- Hi-risk submassive PE = ? CDT
 - RV strain (echo, CT)
 - Symptomatic patient
 - Elevated troponins, BNP
 - PESI Score?

PESI Score

Table 8

Pulmonary embolism severity index (PESI) score

Predictors	Points assigned
Age, years	Age, in years
Altered mental status*	+60
Systolic blood pressure ${<}100~mmHg$	+30
History of cancer	+30
Arterial oxygen saturation <90 % ‡	+20
Temp < 36 °C	+20
Respiratory rate \geq 30/min	+20
$Pulse \geq 110/min$	+20
Male sex	+10
History of heart failure	+10
History of chronic lung disease [†]	+10

A total point score for a given patient is obtained by summing the patient's age in years and the points for each applicable predictor. Points assignments correspond with the following risk classes: Class 1 (very low risk): \leq 65; Class II (low risk): 65–85; Class III (intermediate risk): 86–105; Class IV (high risk): 106–125; Class V (very high risk): >125

[†] Chronic obstructive pulmonary disease

[‡] With and without supplemental oxygen administration

* Altered mental status was defined as confusion, disorientation, somnolence, lethargy, stupor, or coma

Streiff MB, Agnelli G, Connors JM, Crowther M, Eichinger S, Lopes R, McBane RD, Moll S, Ansell J. J Thromb Thrombolysis . 2016; 41: 32-67.

Simplified PESI

- Age > 80
- History of Cancer
- Chronic Cardiopulmonary Disease
- Pulse > 110
- CHF
- SBP< 100
- SaO2 <90%

O factors is low risk, everything else is high risk

Case 2

- 63 yo M with small cell lung cancer
- Confirmed LLE DVT
- Code Blue called to Radiology
- VS: BP 74/46, HR 152, RR 32, O2 86%
- Moderate pericardial effusion on ultrasound
- Patient brought to the ED and started on IVF and Levophed for blood pressure support.
- The pt received 2 L crystalloids and is on maximum dose of Levophed with continued hypotension, current 80/57.

Classic Indications:

- Hemodynamic instability despite 2 pressors
- Failed thrombolytic therapy
- Contraindication to thrombolytic therapy
- Expanded indications:
 - Good surgical candidates with submassive PE and significant RV strain

Video: Beyer E. "Acute Pulmonary Embolism" https://www.youtube.com/watch?v=3OX3-h9zHVo

HARVARD MEDICAL SCHOOL

Surgical Embolectomy

Right

HARVARD MEDICAL SCHOOL

Outcomes After Surgical Pulmonary Embolectomy for Acute Pulmonary Embolus: A Multi-institutional Study

W. Brent Keeling, MD, Thor Sundt, MD, Marzia Leacche, MD, Yutaka Okita, MD, Jose Binongo, PhD, Yi Lasajanak, MSPH, Lishan Aklog, MD, and Omar M. Lattouf, MD, for the SPEAR Working Group

Division of Cardiothoracic Surgery, Emory University, Atlanta, Georgia; Division of Cardiothoracic Surgery, Massachusetts General Hospital, Boston; Division of Cardiothoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts; Division of Cardiothoracic Surgery, Kobe University, Kobe, Japan; and Pavilion Holdings Group, New York, New York

Outcome	All (n = 214), n (%)	Massive (n = 38), n (%)	Submassive (n = 176), n (%)	OR	95% CI	p Value
Postoperative transfusion	93 (43.5)	29 (76.3)	64 (36.4)	5.42	2.43-12.08	<0.01
Septicemia	8 (3.7)	3 (7.9)	5 (2.8)	3.01	0.76-12.48	0.12
Permanent Stroke	10 (4.7)	3 (7.9)	7 (4.0)	2.23	0.59-8.44	0.24
Atrial fibrillation	26 (12.1)	7 (18.4)	19 (10.8)	1.92	0.76-4.90	0.17
Pneumonia	14 (6.5)	4 (10.5)	10 (5.7)	2.07	0.64-6.70	0.23
Prolonged ventilation	60 (28.0)	16 (42.1)	44 (25.0)	2.18	1.054-4.52	0.04
Postoperative dialysis	3 (1.4)	0	3 (1.7)	0.64	0.03-13.18	0.77
Renal failure	24 (11.2)	5 (13.2)	19 (10.8)	1.33	0.48-3.71	0.59
Reexploration for hemorrhage	18 (8.4)	6 (15.8)	12 (6.8)	2.63	0.94-7.37	0.07
In-hospital Mortality	25 (11.7)	9 (23.7)	16 (9.1)	3.13	1.28-7.69	0.01

Table 3. Postoperative Outcomes

Source: Keeling WB et al. Ann Thorac Surg. 2016.

Midterm benefits of surgical pulmonary embolectomy for acute pulmonary embolus on right ventricular function

William Brent Keeling, MD,^a Bradley G. Leshnower, MD,^a Yi Lasajanak, MSPH,^b Jose Binongo, PhD,^b Robert A. Guyton, MD,^a Michael E. Halkos, MD,^a Vinod H. Thourani, MD,^a and Omar M. Lattouf, MD^a

Improvement in RV function/hemodynamics

TABLE 4. Postoperative echocardiographic data				TABLE 5. Midterm echocardiographic follow-up			
	Preoperative $(n = 21)$	Postoperative $(n = 21)$	P value		$\begin{array}{l} Preoperative \\ value \ (n=21) \end{array}$	$\begin{array}{l} Midterm\\ value \ (n=12) \end{array}$	P value
Moderate or greater ventricular dysfunction	17 (81.0%)	9 (42.9%)	.01	Moderate or greater ventricular dysfunction	17 (81.0%)	1 (8.3%)	<.0001
Moderate or greater tricuspid regurgitation	6 (28.6%)	1 (4.8%)	.03	Moderate or greater tricuspid regurgitation	6 (28.6%)	0 (0)	.0005
Pulmonary artery systolic pressure (mm Hg)	51.2 ± 21.6 (n = 17)	36.6 ± 10.1 (n = 6)	.21	Pulmonary artery systolic pressure (mm Hg)	51.2 ± 21.6 (n = 17)	37.2 ± 14.2 (n = 9)	.01
Tricuspid valve regurgitant velocity (m/s)	3.1 ± 0.8 (n = 16)	$\begin{array}{c} 2.8\pm0.7\\(n=7)\end{array}$.20	Tricuspid valve regurgitant velocity (m/s)	3.1 ± 0.8 (n = 16)	2.4 ± 0.7 (n = 11)	.03

Questions?

Case 3

- 56 yo male with history of DVTs on lifelong anticoagulation for underlying pro-thrombotic state presented to ED with traumatic SDH
- Coumadin reversed with prothrombin complex concentrate
- Taken emergently to OR for SDH evacuation
- Peri-Arrest in ICU POD 1

Damage control: shock in acute PE

Definitive therapy

Preload optimization:

- − RV dilation \rightarrow leftward septal shift \rightarrow cardiovascular collapse
- Minimize fluid resuscitation unless clearly hypovolemic
- RV afterload reduction:
 - Intubation is a high risk event (be prepared for cardiac arrest)
 - Do not allow hypoxemia/hypercarbia, but high alveolar pressure is bad
 - Inhaled nitric oxide or epoprostenol might help

Inotropy support

Maintain aortic/RCA perfusion pressure

- Low SVR is poorly tolerated (more septal shift, poor coronary perfusion)
- Support SVR with vasopressors (usually mixed α/β)

Right ventricular auto-aggravation

Case 3

- 56 yo male with history of DVTs on lifelong anticoagulation for underlying pro-thrombotic state presented to ED with traumatic SDH
- Coumadin reversed with prothrombin complex concentrate
- Taken emergently to OR for SDH evacuation
- Peri-Arrest in ICU POD 1- markedly dilated RV on bedside ECHO

Which Catheter to Choose?

- PERFECT registry did <u>not</u> find statistically significant difference USAT vs Regular lysis catheters*
 - PA pressure reduction
 - Infusion time
 - Total tPA dose
- Only EKOS is FDA approved for pulmonary lysis
 - Uses Ultrasound to facilitate/accelerate lysis, fibrin disaggregation
 - ULTIMA, SEATTLE II used USAT

* Kuo W T, Banerjee A, Kim PS, DeMarco F J, Levy J R, Facchini F R, Unver K, Bertini M J, Sista A K, Hall M J, Rosenberg J K, De Gregorio M A. Pulmonary embolism response to fragmentation, embolectomy, and catheter thrombolysis (PERFECT). Chest 2015; 148(3): 667-673.

Massive PE

Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center

TEACHING HOSPITAL

Post CT

Beth Israel Deaconess Medical Center

Post CT

Beth Israel Deaconess Medical Center

Post CT

Beth Israel Deaconess Medical Center

Questions for our panel?

Additional Slides

Impeller System

Amplatz[®] Catheter

Rheolytic Thrombectomy

- AngioJet[®]
- Hydrolyzer®
- Oasis[®]

Venturi Effect

Angiovac[®] / Vortex[®]

Inari[®] Flowtriever[®]

- 22 F sheath
- 3 Nitinol discs
- FLARE Study Ongoing

Penumbra[®] Indigo[®]

- 6F and 8F Aspiration catheter
- Suction pump
- Separator wire
- 3 different tips

Beth Israel Deaconess Medical Center

EKOS

Beth Israel Deaconess Medical Center

